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We study in thi.,; paper a problem concerning the scheduling of a set

of jobs on a single processor computer system. In our model, a job

consists of a periodic stram of identical requests. That is, a job

Ji' dcmands periodically C. -units of computation time in every T; units
3.- L I

of time. Ile shall use J , J., J, Jn to denote the jobs, Tl , T2, .7T

to denote the rcquest periods, and C., C,,..., Cn to denote the computation

times. (TILtLu Tut. our discut;sion, we shall acsume T, ..T: .. .T .for

convenience in notaLtions). That is, a job J,. is completely characLri "zed

by an ordered pair of numbers (C., T.).1 1

By scheduling a set of jobs we mean to determine, at any time instant, the

particular request to .'hich the processor should be devoted. In our model,

the criterion of scheduling is to satisfy each request prior to its

deadline, is Lu: 's t 'I rivaal time of thc next requost of the same jcob.

A set of jobs is said Lo be schedulable by a certain scheduling

algoritLhm if such a criterion can be met. Throughout our dicussion, we

assume that the preetitve sch'eduling discipline is employed. That

is, the execution of a job can be interrupted by the execution of another

job. Thus, a equest f . units of coMputation cime can be satisfied

by one or .ore quanta of tine which su.i to C..

A 'ell-k:o-: scheciuiin!' algorith:m for our model is the earliest
deadline first sc!cdulin: algorithm [ I, 2, 3!. Tn this case, priorities

are assigned to the requests according to their deadlines, with highest

priority assig;:'.ed t he recucst with the earliest deadline. T.e

arrLval um a request :i:h a hv~her pr orit: a!:a,' pree.. ts the execution

of a rcuesi,. wi~ a lower prierity. The earlitjst deadline first scheduling

a1.orm .:: has be,:S sOL wn t,- be e .timum in t oe ;nse 1.hat if a set of

jobs S se .any schvdulini alorit.him then the set is also

schodulab .e v t1:e arl iest deadli ine first scihedIul ing algori th:i.

Another .cheduling algorithm w:hich w s studied in [3] in the

r.1te ;.,O'., jr c c,,u1 mr ;il-rithr:i. Il this case, i:u hur priority is

as Si.'et t,., I -t',ts Z L it sh 11tj evr re(que s L period. Thus, for examp le,

the request.s oF L!he JOI withL the siortest reqtL'st period w i1! always

r..,.::ot a:,- ' o1 a, iher job. This algnrith,: is inferior to the

carl ie:L: dend! 1;r tir:;L ai;',ritfin ill OW sen.,e th It there are sets

o0 lo; wili e 'c. b:: tie CaVI'est dead! ne irs. uL Lgor . tIu

.. ...... ...M I... ..



while not schLcdulable by Lte rate nonotonic algorithm. However, the rate

mooton ic algoriLn is simpler to inplement. Purthernure , the simplicity of

this algorithm enables us to estimate the slack time of a request, which

is the subject of this paper. It is often the case that instead of

simply :mecting the deadline of each request, we might wish to satisfy

each rLeqUCst ahead of its deadline so that there will be a time

span hetween the com.pletion of the execution of a request and the

deadline. 1;e coil suci a rime spaii the sinck time of the request.

We sur.:marize here soine of the results in [31 that will be useful

in our siud-'. 'e u.e u, , u2 . i to d(,note the ratios CI /T, , C2 /T ,/T

C /T . e use u to dotiote the sum : C.iT, u is refeircd to as the

utili -.it r f[actor of the seol of job.,; J , J ...,Jn. A set of jobs is said to

fully Uti!.:e C!'.* -1reessor .,!ith respect to a particular scheduling

algoriL!.M .:' TIe set of jobs is i:etk~aiie by the algorithm whiie increasing

the ce:imutarion time of any of the jobs will cause the set to become

UUSChed1..... N.tL That themuion of fill utilization is defined with

respect to a particular scheculing algorit!Lm. For example, the set of

jobs ',, (I 2), (2,5), fully utilizes the processor with

respect to t-e rate m.onotonic scheduling al.{:orithmn. However, this set

does n¢c fu:': uL;:,.zc .ie processor with resDcct to the earliest

dealine firs: schaui, ai;'r..). Proofs of the follo-.'ing theorems

can e fou:nd i. :

A set of n jobs wi th a uti I izaiion factor less

han n (21 - I) is a lw'ays sch.'dulab' le by the ra to mono tonic

sc .' a ..,or ",

Thoo., i 2 A set of n jobs with a utilization factor less than"

n(2' n  ) does nut ful>v utilize the processor with respect
to the rate monotonic scheduling alIoritl. !oreover, there *d

e-:it .1 set of n jobs ,'.iLh a utilization factor u.Il toI
' 1- 1) tat * L': uiies tile processor. Byr_____ .___
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while not schedulable by the rate monot~olic algorithm. However, the rate

monotonic algorihim is simpler to implcment.l'urthermore, the simplicity of'
F ~this algorithm enables us to estimate the slack timie of a request, which

is the subject of this papcr. It is often the case that instead of

simply meeting the deadline of each request, we might wish to satisfy

each riquLest ahead of its deadline so that there will be a time

I span between the Completion of the execution of a request and the

deadline. We call such a time span the slack time of the request.

We summarize here some of the results in [ 31 that will be useful

in our study. We use ul , u2 , .. .u to deno te the ra t ios C1 /T1 , C2 /T2 , . ..11C /T .We use u to denote the sum i C/T., u is refetrcd to as the

utili.-,tron factor of thle Set Of job Sa n'2 .. , A set of jobs is said to

fully utilize the processor with respect to a particular scheduling

algorithIm if the set of jobs is SC1'cdLJ1ai' by the algorithm while increasing

the c(,nputation time of any of the jobs will cause the set to become

unschedulable.1Nore that thetotion of full utilization is defined with

respect to a particular scheduling algorithmi. For example, the set of

jobs ( 1,=(, 2), J,. = (2,5)) fully utilizes the processor with

respect to the rate monotonic scheduling algorithm. However, this set

does not fully utilize the processor with respect to the earliest

dealine first scheduling algorithmi). Proofs of the following theorems

can be found ia [31

Theorem I A set of n jcbs with a utiliZation factor less
than n )i lays schodulaL'le by the rate monotonic

schcdul ing algorithOita.

Thporom 2 :A set of n jobs with a utilization factor less than-'--
n( ) does not fully utiliZe the poesrwith respect

9-"t otherate mono tonic schedul ing algorithm. Moreover, there 'd

n (2 / ) that [utliUiliZes the processor. Buistribution/
Availability oe
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2. A Fundamental theorem.

Suppose that J1, J, ... , J are to be scheduled by the rate

monotoiic scheduling algorithm. We shall assume that the first request of

all these jobs arrive at t-0. (As a matter of fact, Theorem 3 below

shows that such an assumption covers the %orst possible case). We define

the availability function f(t) to be

if the processor is occupied at t

0 if the processor is not occupied at t

For any .A 5nd T, the integral

1 f (t)dt

gives the total units of time that the processor is not occupied

between A and 4 + 7. A sequc; ce of demands (not necessarily periodic)

within the time interval [0 tkI can be denoted

tomentf, tnl), .. , (dk tk: ~, t)D (di, d0, t], (i , , t_ 9 t( )t

Al) i tl

to mean that d units of computation time is demanded within the time

interval 0, t ], d. units of computation time is demanded within the

time interval (i0, td], and so on. We shall use Da to denote the

sequence of demands.
Da  (d,, . A. ts + 61l), (d ,[Itj + A. tj +a ) ...

(d k, [tk. I  + 4' tk + &1)

which is D delayed by A. Given an availability function[ ,t) and a

sequence of demands D witihin the time interval to, Itk 1, and assumed

that the demands in D) have priorities lower thavi alIl the requests

of the jobs J1, J,, ..., Jn , then the demands in 1) will take up the

f irst d, units of time within the time interval [ 0, t,] I"in f (L) ,

and so on. (Assurre that J',t) can satisfy the demands in D).

We shall use

f(t) - D(t)

to denote Lhe available time that remains after all the demands in D

are satisfied. (This is a slight abuse of notation, since straightly

speaking a sequcace of demands is not a function of time.

Rathcr, I) induces a corresponding l)(t) for a given j(L), and will

iuducv, a differcnt. D(t) for a different f(t).)The following L.inmas are

obvious

*1 -Th- >-.~. 01



2. A Yundamental theorem.

Suppose that Ji, J2, .. , n are to be scheduled by the rate

monotonic scheduling algorithm. We shall assume that the first request of-,

all these jobs arrive at tO. (As a matter of fact, Theorem 3 below

shows that such an assumption covers the ivrst possible case). We define

the availability function f(t) to be :

! I if the processor is occupied at t

0 if the processor is not occupied at t

For any .6 Snd T, the integral

fa T f (t)dt

gives the total units ot time that the processor is not occupied

between A and A + T. A sequcexce of demands (not necessarily periodic)

within the time interval [0, Lk] 'can be denoted
D - (dr, [0, t ], (dz, tt, 9 t ] , .. (dk  [t _ .1 k )

to mean that d, units of computation time is demanded within the time

interval [O, ti], d- units of computation time is demanded within the

time interval (ti, td1], and so on. We shall use D to denote the

sequence of demands.

D - (di. [A, tj + Al), (d,, [t, + A, tz + a]), ... ,

(dk' [tk- + A, tk + a])

which is D delayed by A. Given an availability function 1,t) and a

sequence of demands D within the time interval [O, t 1, and assumed
that the demands in D have priorities lower th.vi all the requests

of the jobs J , J,, ..., Jn, then the demands in 1) will take up the

first di units of time within the time interval [O, t1 l "inf (t),

and so on. (Nssumc that f t) can satisfy the demands in D).

We shall use

f(t) - D(t)

to denote the available time that remains after all the demands in D

are satisfied. (This is a slight abuse of notation, since straightly

speaking a seqluencE of demands is not a function of time.

Rathier, D induces a corresponding D(t) for a given f(t), and will

induc, a diffcrcit D(t) for a differeut f'(t).)The following Lemmas are

obvious



Lemma I: For any f (t) and any D within the time interval 10, "i , if

f At + T  62 + T
AJ f (t)dt s f A2 f (t)dt

than
ta Af(t) - At (t)Idt i2 [(t) - D42(t) dt

le1ma 2 L L

D o (di, I ,t ,]) , (d2, [t I, t2 ) .. W, (dk-1 tk. tk

be a sequence of demands. Let

E - (0, (0, 61), (di, 16, ti + 61), (d:, [ t, + 6, t2 +

...(dk' [tk-I + 6, tk+ )
That is, E is the sequence of demands in D delayed by 6 units of tim.
Then, for any

[ A (t) - DA(t)dt 5 [(I(t) - E A(t)ldt

We prove now a fundam'ental theorem which will be needed in our later

discussion

Theorem 3 : For any set of n jobs J:, J2, ""Jn*scheduled by the

rate monotonic schetulig al orithm, we have

f f(t)dt :5 f(t)dt

for any A and T

Proof : The theorem is proved by induction on n. As the basis of

induction, we note that for n - 1, f(t) is a periodic function of period

T I so that f (t) = 0 for the first C1 units of time and f (t) = I for the

next T, - C, uttits of time in each period. Clearly,

jT f(t)dt - f A+ (L)dt

To carry out the induction step, we assume that the theorem is true ,

when I(t) is the avai!abilit., function after n-I jobs have been scheduled.

Let f (t) dICnuLI the availabilily funEcLion after n jobs have been scheduled.



Consider first ti simple case thlatA is a multiple of Tn. Let

D - (C n, [0, T n]) , (Clio [T n, 2T n],., (C n, (k--i)T n, ,T tu

such that kTn Z T. According to the inductiora.hypjtltrsis

"f (fd f (t)d t
0

According to Let'ma I

fT I +  T  ,~~dtp

0 (t) - D(t)Idt S If (t) - D4 (t).Jdt

which is

p f d f(t)dt (t~dr < f(t)dt

Now consider the case that A ia not a multiple of Tn as

illustrated in Fig 1.

i-i ri

Fig. 1. L

Let, T bC the largest t such that S < A and 6 is a multiple of Tn

6 -rT n.

We examintu- two cases

Case I i(t) = 0 f.or t 5 A. In this case

f + T A(d . + fT ~ d 1

AssordiLnt to Lhe indict ion hypoaiisi s

rr .

f ()dt !5 f(t)dt

0 f(v) d

I
l i" Ti i'l ,, i till i l i. i 'l '



According to Lemma I

; II+[fT ) D(t)ldt. :5 f[ T (t) -DS(t)jdt

0

That is,
( tJ !(t)dt (2)

Combining (1) and (2), we obtain

!(e)dt f (t)dt -
0 A

Case 2

1(t) # 0 for6 S - A. That f(t) 0 0 implies the demand within

the time interval [rT n (r+I)T 111 is satisfied at oprior to t a A.

Thus, within the time interval [A, (r + I)T n1, () f 1(t).
Let X denote (r+)T n-A. Lct

E - (0, [0, X11, (C ,T n* , 2T I ),...

(Cni [kT n+ X,(k+t)Tn+X 1)

That is, E is D delayed by X. Thus, we can write

f(t)dt f ( at)
f f W [(t) E (t (3)

iccording to Lemma 2
f [f (t)- IYI (t)ldt S (t)-EA(tl t (4)

fA A

However, according to Lenrna I and the induction hypothesis

f f dt < (0-i)A (t)dt (5)Jo J

Combining (3), (4), and (5), we obtain
rT A + +T( A 1 + T

f(t)dt < f(t) - EA (tldt + f(t)dt
'0 A

V,

uwn u, mu n nm " nn m nun mn umu nn mu m ua uaum In -- "--um --- n n n



3. Estimation of slack Time.

We show in this section lower bounds on the slack time of a

request. Theorem 4 and 5 in the followings will be proved by induction

on the number of jobs. We show first a lenma which be used as the basis

of induction, in the proofs of Theorems 4 and 5.

Lerma 3 : Lot J1 and J2 be two jobs scheduled according to the rate

monotonic scheduting algoritlm, with u< 2(21/2-1). For an arbitrary request of -

l , et q denote Lhe size of the last quantum of time allocated to the

request and s detiot the length of the slack time, Then s : 0. 207q

Proof : We examine two cases

Case I : The execution of the last quantum of the request begins at no more

than Ti units of time after the arrival of the request, as illustrated

in rig. 2(a).

4'

Fig. 1.

In this case, since a -T1 , during this a units of time atmost

C1 units of computation Lime was devoted to J1 . Thus we have

s T (C1 + C-) T:(I- C, + C2)

T1-( it+ C.,
Ta T

T2 (I- u)

I-U -u- 0.83
_ )I _ -0.3 =0.207q

COsc 2 Thc cy:cution of the last quanhum of thc request begin; at more

01.111 I' uni t, of tLine after Ihe arrival of the request, as illustrated

in Fig. 2(b).



Let b denote C - q. We have

C, C+. 2  ui+.b+g

i' T a+q+s

or

b + q (a + q + s) (u-ul)

or

s(u-ui ) q(I -U+ut ) + b- a(u-ui ) (6)

Consider a job ha-t has a request period equal to a and :e.mputation

time equal to b. Suppose we wani1t to schedule the two jobs ((:I, Ti (ba)

according to the rate monotonic scheduling algorithm. According to Fig. 2(b),

and Theoreni 3, after J1 was scheduled the total processor time available for

J: in the time interval 1 0, al is less than or equal to b. Consequently,

either the set ((C,, TI), (b, a)) fully utilizes the processor or the set

is not schedulable at all. In either case, according to Theorems I and 2,

we have
ul + b 2(2'/2-.i)> U

That is a

b - a(u- u) >0

Consequently, (6) yields

S(u - ut) q(I - u i)

(s Lq( ) l 0.207q

We now have:

Theorem 4 : Let "I, J2 ',..., Jn be n jobs scheduled according to the rate

monotonic scheduling algorithm. Let q denote the le:gth of the last quantum

of time allocated to the first request. if u <n ( 2 /n 1 ) then the slack

time of any request, is larger than or equal to 0.207 q.

Proof : According to Theorem ', the slack time of the first

request is loss than or equal to the slack time of any request. Thus,

it is sufficient to prove that the slack time of the first request is

larger than or equal to 0.207 q.

The theorem is proved by induction on n. Letnana 3 provides the basis

of induction, As to the induction step, we assunie that the theorem is true I'
for n -I jobs. Let us use q and s to denote the length of the last

quantum of Lime allocated to the first request of Jn and the slack time of

this requcst. We conside±r two Cases



uase I . 'the executivn of the last quantum ol time 4LUocatCd t.

begins at no later than t T as illustrated in Fig.3(a). -,

7,iI J.1'

a.,[- ~ ~........,.. ..

(41 S

FiS.3.

Consider the set of n - jobs (CI, TI), (C2 , T), .. ,(Cn Tn

(Cn.I + Cn , T n). According to the diagram in Fig.3(a) and Theorem 3,

this set of n - 1 jobs is schedulable by the rate monotonic scheduling

algorithm. Furthermore, the first request of the job (Cn l+ Cn, T n) will

occupy the processor during the time intervals in which the first

request of Jn-! and the first request of Jn occupy the processor when

the jobs JI, J:, ... , Jn were scheduled. Let q' and s' denote the length of
the last quantum of time allocated and the slack time of the first request

of the job (Cn-i + Cn , T n). Then according to the induction hypothesis

s' 0.207q'

Howerver, since

$I = 8 and q'? q

we have

s ! 0.207 q

Case 2 : The execution of the last quantum of time allocated to the

request begins at later than L a Tn-I as illustrated in the diagram in

Fig. 3(b). Let b denote C - q. We haven

n-I C n-I
ui + - = b + q
. T n --1I a + q + s

n

which can be wriLtcn as
n-I - n.. I

s(u - " u.) - q(i - u + u.) 4. b - a(u - .(7)

Considt'r tlie ii jobs (C. , T,) (Cz , T.), ... (Ca, T 1 ), (b,a).



According to the diagram in Fig.3(b), this set of jobs fully utilizes

the processor with respect to the rate monotonic scheduling algorithm.

(The processor was never left idle within the time interval [0, a].
Because if this was not the case, the first request of Jn will be completed

earlier). It follows thatn-1 b

or
n-1

b - a(u -. ' u.) >0
1i I. r

It follows that (7) can be written as
n-1 n-1

s(u - "I u.) a q(I - u +.: u.)

or
I -u .1-u

s Lq L) 1 2!) q 0.207 q
Uu

n F

We now have

Theoren 5 : Let (C1, TI). (C2 , Tj),...(Cn, T) be a set of n jobs with
u< n(2 I). Let Tnz 2T n-,* For any request of Jn' let q and s denote

the length of the last quantum of time allocated and the length of the

slack time of any request. Then s ! 0.207 q.
Ptoof : The proof of the Theorcn is carried out by induction on n.

Lemma 3 provides the basis of induction. As to the induction step we

consider two cases :

Case I : The execution of the last quantum of time allocated to the

request begins at no more than T units of time after the arrival of the

request as illustrated in Fig. 4 (a).

A ,, A '

.,..( ,e. 7. . . .

a. S a- >,,-,

a.i .4



Let C denote the total computation time allocated to J1-1 within the

time interval [rT. , rTn + a]. Since4 Tn-I we have C2Cn-I

Now consider the n-I jobs (CI, Ti), (C2 , T2), ... (C 1,T n2), (C + Cn , T n).

Since C + C %I 2C C n-2 2C C
S . n ., ui + n-t + n ui + n-iU. +~ n._.._ -, + + - I U

l o I T T n T n. a 2 T T

these n-Il jobs are schedulable by the rate monotonic scheduling algorithm.

Moreover, the cdagram for the time intervil ( rTn, (r +i )T] will be that

shown in Fit. 4(b). For there n-I jobs, since T rit >2T , by the

induction hypothesis
S' 0.207 q'

Since
S' "S q1? q

we have

s 0.207q

Case 21: The execution of the last quantum of time allocated to the

request begins at later than T units of time after the arrival of the
n-I

request. The derivationof the bound for this case is similar to case 2

in the proof oi Theorem 4, and will not be repeated here.



5. Remarks.

Aside from the results in Thec.:cms 4 anid 5 which give a lower

bound of the slack time of a request as a function of q, it seems that

slack titue can be estimated in other ways, in particular, as a function

of the utilization factor of a set of jobs. Intuitively, it is clear that

for a set nf jobs with a small utilization factor, the slack timne of each

request should become large. Our result only uses the utilization factor

in an implicit way.

We conjeCture that the candition T 2: 2T in Theorem 5
ni n-1

is unnecessary.
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